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Abstract 
 

 
Understanding the behavior and modes of failure of micro-electro-mechanical systems 

(MEMS) under different conditions is a crucial element to enhance their reliability and 

sensitivity, which may also lead to widen their use to more applications. One of the major 

causes of failure in these devices is mechanical shock. In this work we present a 

theoretical and experimental investigation into the effects of mechanical shock on 

microstructures under the influence of squeeze film damping and electrostatic forces. For 

the theoretical investigation, a single-degree-of-freedom system is used to model a 

microstructure. Simulation results are demonstrated in a series of shock spectra that help 

indicate the nonlinear effects due to electrostatic and squeeze film forces on the motion of 

the microstructure. In practical applications, the microstructure is mounted on a printed 

circuit board (PCB). For that purpose, the effect of the motion of a PCB on the 

microstructure response is also investigated, both theoretically and experimentally. For 

the theoretical part, a two-degree-of-freedom system is used to model the PCB and 

microstructure assembly.  

 

The effect of mechanical shock on the response of resonant sensors is another reliability 

issue that is addressed in this work. Resonant sensors typically operate at low pressures 

for enhanced sensitivity, which makes their response to external disturbances such as 

shock a greater issue. For the theoretical investigation, a single-degree-of-freedom system 

is used to model the resonant sensor, which is electrostatically driven by a DC load 
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superimposed to an AC harmonic load. Experimental work is also conducted for this 

case. 

 

Finally, we present an investigation in using the nonlinearities arising from electrostatic 

actuation to enhance the sensitivity of a resonant accelerometer. Several results are 

shown for the effect of the DC and AC voltages on enhancing the sensitivity of the 

accelerometer. The use of the accelerometer as a switch triggered by low accelerations 

while operating at primary or sub-harmonic resonance is also investigated.  

 

The experimental investigations in this work were conducted on a capacitive 

accelerometer. It is found that the experimental data are in good agreement with the 

simulation results in all the investigated cases. It is found that accounting for the 

nonlinearities, arising from the DC load and the AC harmonic load, and for the PCB 

motion is crucial. In some cases, whether the microstructure is operated as a capacitive 

sensor or a resonant sensor, the microstructure may experience an early dynamic 

instability. This in turn may lead to unexpected failure of the sensor. 
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Chapter 1. Introduction 
 
 
 

1.1 Motivation 
 

Microelectromechanical systems (MEMS) are miniature, low powered devices. 

Currently, they have become well commercialized products used in a variety of 

industries, such as aerospace, health care, automotives, and telecommunications (Hsu, 

2002). The ability to manufacture MEMS devices using existing manufacturing 

techniques enables their production in large volumes under low costs. These attractive 

features of MEMS drew the industry into mass producing sensors and actuators, realized 

as MEMS devices, causing the exceptional establishment of the MEMS field. There is no 

limit to the wide range of applications MEMS products are used for, examples of which 

include, pressure sensors, airbag accelerometers, mirror arrays for television and displays, 

micromirrors, and disposable medical devices (Hsu, 2002).  

Despite how well researchers and the industry utilized the attractive features of 

MEMS, there is still a lot of room for optimizing the performance of MEMS devices, and 

in turn enhancing their sensitivity and reliability. Understanding the behavior and modes 

of failure of MEMS under different conditions is crucial to allow us to enhance their 

sensitivity and reliability and also to widen their use to more applications. Mechanical 

shock is one of the major causes of failure in MEMS devices. The MEMS can be exposed 

to shock during fabrication, shipping, storage, or end use. They can fail in a number of 
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ways including fracture (Tanner et al., 2000) and stiction (Hartzell and Woodilla, 1999). 

This thesis concentrates on the response of MEMS under mechanical shock accounting 

for most of the practical issues in MEMS, including the effect of the motion of printed 

circuit boards (PCBs). 

Not only are the external factors such as mechanical shock or the motion of a 

PCB affect the response of MEMS devices, but also nonlinear effects within the 

microstructure itself affect the response, and therefore the reliability, of MEMS devices. 

Nonlinearities are present in MEMS in many different forms. The most common are 

electrostatic forces, squeeze film damping, thermo-elastic damping, and mid-plane 

stretching. The interest of this thesis is to consider the nonlinear effects of electrostatic 

forces and squeeze film damping, along with the presence of external effects from 

mechanical shock and PCB motion, on the response of MEMS devices. 

Accelerometers are one of the well established MEMS products and one which 

has been under major concentration in industry. Recently, ultra sensitive accelerometers 

sensing accelerations in the micro range (micro-g accelerometers) have been under 

increasing focus in the research community. This focus is due to the many applications in 

which they are needed. Some of these applications include GPS navigation and guidance 

systems, seismometry for earthquake prediction and oil-exploration, micro-gravity 

measurements in space, underwater acoustic measurements, unmanned aerial vehicles 

(UAV’s), and virtual reality headsets (Yazdi and Najafi, 2000). Capacitive sensing, 

resonant sensing, and tunneling current sensing, are all sensing schemes that have been 

employed to develop micro-g accelerometers. This thesis explores using the nonlinear 
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effects of electrostatic forces in enhancing the sensitivity of a resonant type 

accelerometer. 

 

1.2 Literature Review 
 

The evolvement of the MEMS field over the past years has led to many investigations 

over the various aspects of MEMS. In this section, we review the relevant contributions 

found in the literature on three primary topics discussed in this thesis (reliability of 

MEMS under shock, nonlinearities in MEMS, and micro-g accelerometers). 

 

1.2.1 Reliability of MEMS under shock 
 
Numerous works have been conducted to address the behavior of microstructures under 

mechanical shock. Next, we summarize the main contributions. 

Wagner et al. (2001) considered shock loads on MEMS-structures that arise 

during drop-tests. They used a z-axis sensor and theoretically tested, using finite element 

(FE) analyses, the stress history during impact of two different designs. For the purpose 

of their experimental investigation, z-axis sensors were fabricated and tested under both 

controlled drops and fully guided impacts. They observed two types of failures, which 

raised the question of re-evaluating the FE results to monitor those failures. De Coster et 

al. (2004) raised the importance of taking the effect of mechanical shock into the design 

of RF-MEMS capacitive switches. They presented a method in analyzing the response of 

electrostatically driven RF-MEMS capacitive switches to external mechanical shock. 

They showed that the power handling of shunt switch can fall by more than 30% under 

shocks of 5000 ms-2. Srikar and Senturia (2002) investigated the effect of shock and 



www.manaraa.com

4 

  

shock duration on MEMS devices and defined three relevant time scales: acoustic transit 

time, the time period of vibrations, and the duration of the applied shock. They found that 

many MEMS devices respond quasi-statically in a shock environment. Younis et al. 

(2007) developed a Glarekin-based reduced-order model to simulate the response of 

microstructures under mechanical shock. Both cantilever and clamped-clamped 

microbeams were simulated to account for low-frequency and high-frequency 

microstructures. Their model was capable of capturing the dynamic behavior of 

microstructures under both high and low shock loads, for both linear and nonlinear 

behaviors. 

In the previous summary, the response of microstructures alone was considered. 

However, microstructures in real-life applications are packaged and attached to printed 

circuit boards (PCBs), which in turn could have a significant influence on the 

microstructures’ response. Next, we focus merely on the effect mechanical shock on a 

PCB. Lim et al. (2002) presented a FE model to study the drop impact response on an 

electronic pager. They concentrated on the effects of the point of application of shock. 

Pitarresi and Primavera (1992) concentrated on the different modeling techniques in 

determining the dynamic characteristics of circuit cards populated with components 

(microstructures). They compared the simulation results with experimental modal 

analysis and found that accounting for the mass and stiffness of the components on the 

circuit cards yielded the best results. Wong et al. (2005) presented a comprehensive study 

on the effects of PCB materials and dimensions on the interconnection stresses. They 

modeled the PCB as a spring-mass system, a beam, and a plate, and studied its dynamics 

under a half-sine shock pulse.  
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Other authors such as Luan et al. (2003), Ong et al. (2003), and Suhir et al. (2000) have 

studied the effect of mechanical shock on a PCB and concentrated on the failure of 

solders. One common factor missing in these contributions is the effect of the motion of 

the PCB on the microstructure itself. Wong et al. (2005) mentioned, focusing only on the 

effects of drop impact on interconnections, that taking measures such as lowering the 

PCB stiffness, and therefore the natural frequency, would not be effective against drop 

impact. Alsaleem et al. (2009) investigated the effect of the motion of a PCB on the 

response of a MEMS device to shock loads. They showed the significance of accounting 

for the PCB effect when modeling a MEMS device under shock, as it could lead to 

inaccurate predictions of the microstructure motion. They found that a poor design of the 

PCB or the MEMS package may result in severe amplification of the shock effect. This 

contradicts with Srikar and Senturia (2002) who mentioned that, in a worst case scenario, 

the PCB transmits the shock load to the microstructure without changing its intensity, 

however; in most cases the PCB reduces the applied shock on the microstructure. It will 

be shown later that the natural frequency of the PCB can extensively affect the motion of 

the microstructure and sometimes lead to its failure, as presented by Alsaleem et al. 

(2009). 

 

1.2.2 Nonlinearities in MEMS 
 
Sources of nonlinearities in MEMS can exist from electrostatic forces, squeeze film 

damping, material nonlinearities, and geometric nonlinearities. The focus of this thesis is 

to discuss the effects of squeeze film damping and electrostatic forces on the response of 

microstructures. 
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1.2.2.1  Squeeze film damping 

The phenomenon of squeeze film damping exists in any MEMS device that employs the 

principle of a parallel-plate capacitor, where a movable electrode moves towards a 

stationary electrode. In typical MEMS devices, the distance (gap) between the electrodes 

is in the micro range. In the presence of a structure with a large surface area compared to 

the gap width, as the structure moves towards the stationary electrode, the air between the 

electrodes acts as a highly viscous fluid, opposing the motion of the proof mass. This is 

referred to as squeeze film damping (SQFD). There has been extensive research in the 

past addressing the effects of squeeze film damping on microstructures. Next we 

summarize some of these contributions. 

We begin with Starr (1990) who modeled the squeeze film damping in a parallel-

plate capacitive accelerometer using a linearized Reynolds equation. He derived an exact 

expression for the damping forces of a circular disk and an approximate expression for 

the damping force of a rectangular plate. Chu et al. (1996) investigated the dynamics of 

polysilicon parallel-plate electrostatic actuators. To account for squeeze film damping 

they used the same expressions used by Starr (1990), however, they modified the 

expressions to account for the varying gap distance as the proof mass moves. Zhang et al. 

(2004) studied the effect of squeeze film damping on a microbeam resonator. They 

presented a first-order analysis for the squeeze film damping effect, which is based on the 

coupled elastic beam theory and Reynolds equation of incompressible fluid films. The 

perturbation method was used to linearize the Reynolds equation as in Starr (1990). The 

solution of the coupled solid deformation and fluid flow equations showed that the 

squeeze film effect can be characterized by two dimensionless parameters used for the 

simple spring-mass-damper system. Jordy and Younis (2008) explored the use of squeeze 



www.manaraa.com

7 

  

film damping phenomenon as a way to mitigate shock and its effects on microstructures. 

They investigated the effect of changing the size of the perforation holes and the gap 

width. As a case study, they used a G-sensor and found that the threshold shock increases 

significantly when the holes size or gap width are decreased. Darling et al. (1998) used a 

green function method to find the solution of the linearized Reynolds equation. A number 

of useful cases on the effects of damping on cantilevers, diaphragms, tilting plates, and 

drum-head modes are presented. Pan et al. (1998) concentrated on the squeeze film 

damping effect on a MEMS torsion mirror (rotation between two very closely spaced 

surfaces). Both the Fourier series solution and the double sine series solution were 

derived for the linearized Reynold equation. An experimental investigation was carried 

out and the results were close to the modeling results.  

Blech (1983) solved analytically the linearized Reynolds equation in the case of 

oscillating rigid plates of rectangular and circular shapes with trivial pressure boundary 

conditions and derived analytical expressions for the spring and damping forces. Blech 

(1983) referred to the use of squeezed gas films in tailoring the frequency response of 

seismic accelerometers. Andrews et al. (1992) employed the Blech model (Blech, 1983) 

in investigating the squeeze film effects on microstructures. They compared theoretical 

and experimental measurements over a range of pressures and frequencies where the 

results were in good agreement except for some discrepancies at low and high 

frequencies. Veijola et al. (1995) derived an electrical equivalent circuit for the damping 

and spring forces based on the Blech model (Blech, 1983). They conducted simulations 

and experimental measurements on a capacitive accelerometer to verify their model and 

the results were found to be in good agreement. Nayfeh and Younis (2004) presented a 
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new approach in modeling flexible microstructures under the effect of squeeze film 

damping. They used perturbation methods in deriving an analytical expression for the 

pressure distribution. Their theoretical calculations of the quality factors are in good 

agreement with available experimental data. Younis and Nayfeh (2007) also presented 

simulations of squeeze film damping in microplates actuated by large electrostatic loads. 

They derived analytical expressions for the pressure distribution in terms of the plate 

mode shape around the deflected position using perturbation techniques.  

 

1.2.2.2  Electrostatic forces 

The second nonlinearity investigated in this thesis is from the electrostatic forces in 

microstructures. Several means of actuation are used for MEMS such as electrostatic, 

thermal, electromagnetic, piezoelectric, piezomagnetic, and optical actuation (Rebeiz, 

2003). Electrostatic actuation is the most common method of actuation in MEMS devices 

due to its simplicity and low-power consumption. A typical electrostatically actuated 

microstructure employs two parallel-plates, a microbeam and stationary electrode 

separated by a gap, where the microbeam is actuated by a DC bias. In the case of a 

resonator, the microbeam is driven by an AC harmonic load in addition to the DC load. 

The DC bias causes an initial deflection of the beam to a new equilibrium position and 

the AC harmonic load causes the beam to vibrate about the new equilibrium. However, 

there is a limit to the voltage used in actuating a microstructure depending on its 

geometric and mechanical properties, beyond which the microstructure experiences an 

instability known as “pull-in” (Younis et al., 2003), where the microstructure touches the 

stationary electrode. The voltage associated with pull-in is known as the “pull-in 

voltage”. 
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A great number of publications reported observations of nonlinear response of 

microstructures due to electrostatic forces. Legtenberg and Tilmans (1994) conducted 

both theoretical and experimental investigations on electrostatically driven vacuum-

encapsulated polysilicon resonators and noted a hardening behavior. Ayela and Fourneir 

(1998) investigated the nonlinear behavior of electrostatically excited micromachined 

silicon resonators and observed a softening behavior which they claimed was due to the 

mechanical properties of the resonators rather than the electrostatic excitation. Gui et al. 

(1998) studied the nonlinearity and hysteresis effects of electrostatically actuated 

resonant microbridges both theoretically and experimentally. They observed that in order 

to avoid hysteresis, the choices of DC and AC driving voltages, quality factor, and 

geometry of the microbridge are crucial. Their investigation concluded that reducing the 

quality factor and driving voltages or increasing the pull-in voltage increase the chances 

of a hysteresis-free operation, however, under the cost of losing resolution and frequency 

stability, lower sensitivity, and a higher noise level. Veijola et al. (2000) investigated 

nonlinearities in electrostatically driven MEMS resonators using the harmonic balance 

method showing hardening effects due to the cubic nonlinearity of the spring coefficient 

and softening effects due to the electrostatic forces. 

Starting 2002, the group of Abdel-Rahman, Nayfeh, and Younis presented one of 

the earliest robust theoretical works that discussed the nonlinearities of electrostatically-

actuated microbeams. Abdel-Rahman et al. (2002) shed light on the importance of 

accounting for the mechanical restoring force of the microbeam (mid-plane stretching) to 

avoid underestimation to the stability limits. Softening behavior due to electrostatic 

forces was noted and the shift in the natural frequency of the microbeam due to the 
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electrostatic forces was highlighted. They also showed how the microbeam dimensions 

can be used to extend the domain of the linear relationship between the electrostatic 

forces and the natural frequency. Younis and Nayfeh (2003) presented an investigation 

into the response of a resonant microbeam to an electric actuation. They accounted in 

their model for the nonlinear effects of mid-plane stretching, DC electrostatic force, and 

AC harmonic force. They validated their simulation results by comparing them with 

published experimental results. Abdel-Rahman and Nayfeh (2003) focused on the 

response of microbeam-based resonant sensors due to superharmonic and subharmonic 

electric actuations. They adopted the method of multiple scales to describe the response 

and stability of the microbeam. Typical frequency-response and forced-response curves 

were used to demonstrate different nonlinear aspects such as bifurcations and hysteresis 

which are meant to aid designers in safely operating their sensors at different frequencies. 

Nayfeh and Younis (2005) conducted similar work but concentrated on the effects of the 

large AC excitation amplitude on the frequency-response curves and reported a number 

of cases where dynamic instability (pull-in) occurs. Nayfeh et al. (2007) showed how the 

dynamic pull-in phenomenon could be utilized to design a low-voltage MEMS RF switch 

actuated with a combined DC and AC loading.  

The works of Agrawal et al. (2006, 2007) investigated nonlinear effects on a 

double-ended-tuning-fork microresonator. Nonlinear hardening effects from the 

mechanical restoring force of the beam (mid-plane stretching) were observed at low bias 

voltages, and softening effects from the electrostatic forces were observed at high bias 

voltages. An intermediate bias voltage was presented, in which both nonlinearities cancel 

each other, increasing the linear range of the resonator. Also in the work of Agrawal et al. 
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(2007), they studied the scaling of nonlinearities in a double-ended-tuning-fork 

microresonator and found that increasing the resonant frequency as well as reducing the 

length of the microbeam strongly improves power handling of the microresonator. 

Similar studies were presented by Shao et al. (2007, 2008), in which the nonlinearities of 

micromechanical free-free beam resonators were investigated. Hardening and softening 

effects were again observed and the possibility of nonlinearity cancellation was 

discussed. In the work of Shao et al. (2008) specifically, a thorough investigation on the 

nonlinearity cancellation was conducted and was found to enhance the power handling 

capabilities of resonators, however, may not be achievable for resonators with a very 

large cubic mechanical spring constant. Alsaleem et al. (2009) provided a theoretical and 

experimental investigation on the nonlinear response of a capacitive sensor due to 

electrostatic forces. In analyzing the stability of the resonator response, a Floquet theory 

and the basin of attraction methods were used. Dover-cliff integrity curves were used to 

illustrate the erosion of the basin of attraction for given values of frequencies. This is a 

helpful tool for MEMS designers when questioning the safety of their resonator against 

disturbances. 

In addition to the nonlinearities and hysteresis behaviors emphasized, more 

complex dynamical behaviors, such as chaos, were also observed and studied for 

electrostatically driven microstructures. Liu et al. (2004) conducted simulations on a 

MEMS cantilever system with electrostatic sensing and actuation, intended for a MEMS 

based mass storage chip. They observed bistability and a Hopf bifurcation in the closed 

loop controlled cantilever system without disturbances. De and Aluru et al. (2005, 2006) 

discussed complex nonlinear oscillations in electrostatically actuated microstructures. 
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They observed, through simulations, that the application of a large DC bias voltage on a 

microstructure under superharmonic excitation can bring it to a nonlinear state with 

chaotic behaviors. Park et al. (2008) investigated the potential of chaos control in 

microstructures and demonstrated that by adopting an appropriate feedback rule, a 

chaotic response can be effectively converted into a periodic response. This was shown to 

increase both the operating range and effective power output of the electrostatically-

actuated microresonator under study. 

 

1.2.2.3  Nonlinear shock spectra 

Over a number of decades, researchers have tried to represent the nonlinear effects on the 

response of structures by the means of a nonlinear shock spectrum. Next we summarize 

some of the contributions focusing on nonlinear shock spectra. 

Thomson et al. (1960) investigated the response of a single mass system with 

bilinear stiffness under different shock pulses and presented his results in a series of 

nondimensionalized nonlinear shock spectra. Young et al. (1963) pointed out the 

difficulty in presenting the nonlinear shock response problem since the superposition 

principle does not hold as in the linear case. Young et al. (1963) analyzed the response of 

an undamped single-degree-of-freedom system composed of a mass on a nonlinear 

spring. They investigated both the effect of a cubic-softening spring and a cubic-

hardening spring and presented their results in a series of nondimensionalized shock 

spectra. It will be shown later that the softening effects that Young et al. (1963) analyzed 

resemble the effect of the electrostatic forces. 
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1.2.3 Highly sensitive accelerometers 
 
The importance of highly sensitive accelerometers has been realized in the literature. A 

number of sensitive accelerometers have been fabricated and proposed employing 

capacitive sensing, resonant sensing, and tunneling current sensing. Capacitive sensing is 

attractive due to its high sensitivity, good noise performance and low-power dissipation. 

However, it does not easily implement digital readout. Tunneling sensors have a low 

noise floor. However, due to the small allowable displacement at the tip they require a 

very stiff feedback loop, which reduces the useful bandwidth and dynamic range. As for 

resonant sensing, it has high sensitivity, low electrical drift or noise, wide output range, 

and can easily implement digital readout. Here, we summarize some of the contributions 

related to highly sensitive accelerometers. 

Yazdi and Najafi (2000) used a combined surface and micromachining process to 

fabricate a highly sensitive accelerometer that utilizes a capacitive sensing scheme. The 

sensitivity of the device was enhanced through the use of a large proof mass, small 

damping and a narrow uniform air gap over a large area. The device is tested by applying 

an electrostatic force to generate an input acceleration. The device shows a sensitivity of 

2 pF/g. Rudolf et al. (1990) fabricated an accelerometer utilizing capacitive sensing, 

working in the range of 1 µg to 0.1 g at frequencies from 0.01 to 100 Hz. A number of 

static and dynamic measurements were taken and also temperature sensitivity was 

investigated. Another capacitive sensing accelerometer was introduced by Leuthold and 

Rudolf (1990) that uses a self-balancing capacitor bridge circuit, sensing capacitance with 

a resolution of 0.04 fF for frequencies between 0 and 1 Hz. Helsel and Gassner (1994) 

developed a monolithic bulk-micromachined vibrating beam accelerometer that uses 
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capacitive sensing. An applied acceleration increases the resonant frequency of the 

vibrating beam, and capacitance is used to keep the beam oscillating at the resonant 

frequency. The accelerometer is developed for navigation purposes. Henrion et al. (1990) 

used silicon micromachining techniques to fabricate a high-precision high sensitivity 

accelerometer, which utilizes electrostatic field sensing and electrostatic force feedback. 

They claimed that the accelerometer can be built to sense accelerations from nano-g to 

hundreds of g. Roszhart et al. (1995) fabricated a micromachined vibrating beam 

accelerometer that uses resonant sensing. The device has a measured sensitivity of 1 gµ  

with a full scale of 40 g and is designed for defense-related inertial navigation. Liu et al. 

(1998) fabricated a high sensitivity bulk-silicon-micromachined tunneling accelerometer 

that is intended for underwater acoustic applications. The measured sensitivity is 50 

Volt/g with a resolution of ./2 Hzgµ  Testing was conducted to verify the performance of 

the accelerometer.  

A resonance type accelerometer detects variation of resonant frequency due to 

external acceleration. Numerous researches have been conducted in the area of resonant 

accelerometers and a number of them have been developed and fabricated, with some 

being commercially used. Burns and Horning (1995) fabricated a micromachined all-

silicon acceleration sensor with a direct-to-digital frequency output. When the device is 

subjected to acceleration, bending stresses are created. The strain is measured and applied 

to the microbeam, shifting its resonant frequency. The accelerometer is developed for 

navigation purposes. Burrer and Esteve (1994) characterized and fabricated a resonant 

accelerometer, electrothermally driven and piezoresistively sensed. The device has a 

sensitivity of 200 Hz g-1. Aikele and Bauer (2001) presented a resonant accelerometer, 
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thermally excited and piezoresistively sensed. The accelerometer has a sensitivity of 70 

Hz g-1.   

 

1.3 Thesis Objectives and Organization 
 

The objectives of this thesis are: 

• To study the combined effects of mechanical shock, electrostatic forces, and 

squeeze film damping on the response of a microstructure.  

 

• To study the effect of PCB motion on the response of a microstructure. 

 

• To investigate the use of nonlinearities in enhancing the sensitivity of a resonant 

accelerometer, and realizing its use as a switch triggered by low acceleration. 

 

• To study the effect of mechanical shock on resonant sensors operating at reduced 

pressure conditions. 

 

• To validate the theoretical investigations using experimental work on a 

commercially available MEMS device. 

 

The organization of the thesis is as follows. In Chapter 2, we present a general theoretical 

background on mechanical shock in MEMS and the shock spectrum, electrostatic 

actuation, and squeeze film damping. In Chapter 3, we present both simulation and 

experimental investigations on the nonlinear effects of electrostatic forces and squeeze 
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film damping on the motion of a MEMS device under mechanical shock. All the work is 

presented in a series of shock spectra. In Chapter 4 we investigate the effect of PCB 

motion on the response of microstructures under mechanical shock. The effect of the 

PCB and microstructure natural frequencies is highlighted. 

In Chapter 5, we investigate the sensitivity enhancement of a resonant accelerometer by 

operating it in the nonlinear regime. The operation of the accelerometer at both primary 

and sub-harmonic resonance is investigated. This chapter also focuses on the use of the 

nonlinearities arising from the electrostatic forces to realize a switch triggered by low 

acceleration. In Chapter 6, we conduct a theoretical and experimental investigation on the 

effects of mechanical shock on the response of an electrostatically actuated resonant 

sensor with a focus on the effect of the AC harmonic load. The simulation results are 

demonstrated in a series of shock spectra that help indicate the combined effects of shock 

and the existing nonlinearities from the electrostatic forces. Finally, Chapter 7 concludes 

this thesis with summary, conclusions, and suggestions for future work. 

  



www.manaraa.com

17 

  

 

Chapter 2. Background 
 
 
 

2.1 Mechanical Shock in MEMS 
 

Mechanical shock is the sudden force that can cause a sudden acceleration or deceleration 

for a system. It is caused by, for example, drop, impact, kick, earthquakes, or even an 

explosion. It is also defined as a transient physical excitation with a duration between 

once and twice the natural period of the excited mechanical system (Lalanne, 2002). In 

the case of microelectromechanical systems, shock could be experienced during 

fabrication, shipping, storage, or end use. Mechanical shock has the potential to cause 

undesirable effects on MEMS devices such as stiction and short circuit problems or even 

failure of the device through fracture. 

 

2.1.1 Shock pulse shapes 
 
Mechanical shock can be modeled theoretically to imitate the shock pulse a 

microstructure may experience. Different shapes of shock pulses have been adopted for 

that purpose, the most common of which are half-sine, triangular, and rectangular shock 

pulse shapes, which are represented in Figure 2.1 (Lalanne, 2002). 
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         (a) Triangular pulse          (b) Rectangular pulse 

 

(c) Half-sine pulse 

Figure 2.1: Shock pulse shapes. 
 

2.1.2 Response of a linear single-degree-of-freedom system 
 
In many cases, a single-degree-of-freedom model could be used as a simple 

representation of a microstructure. In order to obtain a solution to the response of a 

microstructure to shock, it is modeled as a spring-mass-damper system (Figure 2.2). The 

applied shock is modeled as a base excitation with the differential equation of motion of 

the microstructure written as: 

               ymkzzczm ɺɺɺɺɺ −=++                    (2.1) 

where z is the relative deflection of the mass m, which is the absolute motion of the mass 

x minus that of the base y (z = x − y), the superscript dot denotes time derivative, c is the 
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viscous damper coefficient, k is the stiffness of the microstructure, and yɺɺ  is the base 

acceleration pulse. The equation can be put in the form: 

         yzzz nn ɺɺɺɺɺ −=++ 22 ωξω           (2.2) 

where, 

         km

c

2
=ξ  (damping ratio)       (2.3) 

and 

            m

k
n =ω  (natural frequency)       (2.4) 

 

 
Figure 2.2: Linear single-degree-of-freedom system subjected to a base excitation. 
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The next step, given the microstructure parameters and shock pulse amplitude and shape, 

a numerical solution of the microstructure response can be obtained using direct time 

integration of the differential equation of motion, Equation (2.1). 

 The shock pulses applied to a microstructure in practical applications have 

different pulse shapes and can vary from one to another. Brown et al. (2001) showed that 

a good approximation to these shocks can be presented by a half-sine shock pulse (Figure 

2.1a). For that reason, a half-sine pulse will be used throughout the simulations of this 

thesis to represent the applied base acceleration yɺɺ , which is defined as: 

     




 −−+= )()](sin[)()sin(0 TtuTt
T

tut
T

Ay
ππ

ɺɺ       (2.5) 

where A0 is the amplitude, u(t) is the unit step function, and T is the pulse duration. An 

example of a typical response of a microstructure to a shock load is depicted in Figure 

2.3b. 
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(b) 

Figure 2.3: (a) Input shock of 1 g. (b) Time history response of a microstructure to a 
shock load of 1 g under zero damping. 

 
 

2.1.3 Shock response spectrum 
 
A Shock Response Spectrum (SRS) is a graphical representation showing the variation of 

the largest response of a linear Single-Degree-Of-Freedom (SDOF) system subjected to a 

mechanical shock, plotted against its natural period. 

The linear shock response spectrum in Figure 2.4 represents the behavior of a structure 

when subjected to mechanical shock of a half-sine pulse shape. It shows the peak 

dynamic response of the structure Adyn as a function of the shock duration T. Typically, 

Adyn is normalized by the static response of the structure to an equivalent static load of the 

same shock amplitude and T is normalized by the natural period of the structure Tn.  

As seen in Figure 2.4, the normalized peak dynamic response does not exceed 1.76 times 

the structure’s static deflection and is achieved in the case of zero damping (Steinberg, 

2000). The spectrum can be classified into three separate regions, the dynamic region, the 

quasi-static region, and the shock isolation region. In the dynamic region, the response of 
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the structure is amplified as the shock duration is close to its natural period 







≈ 1

nT

T
. In 

the quasi-static region, the shock duration is much larger than the natural period of the 

structure, where the shock is experienced almost as a static load. Hence, the response of 

the structure is almost equal to the static response.  

 

Figure 2.4: A shock response spectrum for a SDOF system of a half-sine shock 
pulse, assuming no damping. 

 
 

2.2 Electrostatic Actuation 
 

An actuator is defined as a mechanical device used to move or control something (Hsu, 

2002). The three principle means in actuating microdevices are thermal forces, 

piezoelectric forces, and electrostatic forces. Electrostatic actuation is the most common 

method of actuation in MEMS devices due to its simplicity and low-power consumption. 
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As one of the focuses of this thsis is on the electrostatic forces, it is further introduced 

below. 

 

2.2.1 Coulomb’s Law 
 
Electrostatic force F is defined as the electrical force of repulsion or attraction induced by 

an electric field E. An electric field E exists in a field carrying positive and negative 

electric charges. Figure 2.5 shows two charged particles A and B existing in an electric 

field. The induced electrostatic force according to Coulomb’s law can be expressed as: 

                                                          2

'

4

1

r

qq
F

πε
=                                                    (2.6) 

where ε = permittivity of the material separating the two particles and r is the distance 

between the two particles. In free space, 2212
0 /1085.8 mNCx −= −ε . The force F is 

repulsive if both charges q and q’ carry the same charge sign, or attractive if both charges 

carry opposite signs. 

 

 
Figure 2.5: Two particles in an electric field. 
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2.2.2 Electrostatic forces in parallel plates 
 
Figure 2.6 represents two charged plates separated by a dielectric material with gap d. 

The plates become electrically charged when a voltage is applied to the plates. This 

action induces capacitance in the charged plates, which can be expressed as: 

         
d

WL

d

A
C rr 00 εεεε ==                                 (2.7)    

where, A is the area of the plates and rε  is the relative permittivity. The energy 

associated with the electric potential can be expressed as: 

                                   
d

WLV
CVU r

22

1 2
02 εε

−==                           (2.8)         

The negative sign in Equation (2.8) exists because there is a loss of the potential energy 

with the increase of the applied voltage. The associated electrostatic force that is normal 

to the plates can be derived from the potential energy expression in Equation (2.8) as: 

                                  2
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Figure 2.6: Electric potential in two parallel plates. 
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2.2.3 Electrostatically actuated microstructures 
 
For an electrostatically actuated microstructure, we can once again adopt the single-

degree-of-freedom model as in Figure 2.2, actuated by a DC voltage and with a 

separation gap d between the movable and stationary electrodes (Figure 2.7). The 

differential equation of motion now becomes:  

                                          2

2

))((2 txd

AV
kxxcxm DC

−
=++ ε

ɺɺɺ                 (2.10) 

In order to obtain the solutions of the above equation and check their stability, we use 

state space representation: 

                                                        xx =1  ; xx ɺ=2     (2.11a) 
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Next, we obtain the equilibrium points. Setting the right-hand side of Equation (2.11b) 

equal to zero yields, 
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We solve Equation (2.12c) to get: 
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Here we normalize x1 by the gap d to distinguish between the physical solutions (less 

than the gap width) from the non-physical solutions (larger than the gap width). Figure 

2.8 shows a plot of the variation of the normalized static deflection of the three obtained 

solutions, with the DC voltage. To find the stability of the physical solutions, we first 

obtain the Jacobian by deriving Equation (2.11b): 

     
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Next we solve for the determinant of the eigenvalue problem and set it equal to zero:  

0=− IA λ       (2.14) 
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For zero damping (c = 0), we obtain: 
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Figure 2.7: Linear one-degree-of-freedom system subjected to a force. 
 

 

Figure 2.8: Variation of the normalized static deflection of a parallel-plate, 
electrostatically actuated microstructure with the DC voltage. 
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2.3 Squeeze Film Damping 
 

A typical electrostatically actuated MEMS device employs two parallel-plates, a moving 

plate and a stationary electrode separated by a gap. The microstructure is actuated 

electrically by the attractive force between the electrodes. In order to increase the 

efficiency of actuation and improve the sensitivity of the device, the distance between the 

parallel plates is minimized and the surface area of the electrodes is maximized. Under 

such conditions, squeeze film damping effects are evident. This phenomenon is present 

due to the movement of the fluid underneath the plate (microbeam) which is resisted by 

the viscosity of the fluid. This gives rise to a pressure distribution underneath the plate 

which acts as a spring and/or damping force (Younis and Nayfeh, 2004). Failure in 

accounting for the squeeze film damping effects when modeling a MEMS device can 

give a very inaccurate prediction of its response. The significance of squeeze film 

damping effects will be highlighted later in this thesis. Figure 2.9 shows a schematic of a 

parallel-plate MEMS device with the presence of squeeze film damping. 

 

 
Figure 2.9: Schematic of a parallel-plate MEMS device with a squeezed fluid. 

 
 
 
 
 

Length L 

d Vertically Moving Plate 

Squeezed Fluid 

Stationary Plate 

L 

b 

x 

y 



www.manaraa.com

29 

  

2.3.1 Blech model 
 
Many models are available in the literature to model the effects of squeeze film damping. 

The one model adopted in this thesis to represent the effects of squeeze film damping is 

the Blech model (Blech, 1983). The Blech model defines the squeeze film term as  

             
)(xCf squsqueeze ɺ=
      (2.17)
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and σ  is the squeeze number, [ ]2
12

xdP

A
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n

−
= ηωσ . ere, x is the relative displacement of the 

microstructure and xɺ  is the relative velocity of the microstructure (Figure 2.9). The 

parameter aP  is the ambient pressure, ωn is the natural frequency of the microstructure, 

and η  is the viscosity coefficient of air.  

The Blech model in Equation (2.18) above is modified to allow variation in the gap 

distance with the motion (Starr, 1990). Using only one term to obtain the squeeze 

damping coefficient has proven to accurately depict the effect of squeeze film damping. 

By considering only the first term of Equation (2.18), where m = 1 and n=1, the squeeze 

damping coefficient becomes 
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Table 2.1 demonstrates the difference between using one or more terms to obtain the 

squeeze damping coefficient and shows that using one term is sufficient. The parameters 

used to obtain the squeeze damping coefficient in Table 2.1 are given in the following 

chapter. 

Table 2.1: Squeeze damping coefficient calculation. 
Number of Terms 1 2 3 

Squeeze Damping Coefficient 0.16998 0.17258 0.17281317 
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Chapter 3. Investigation of the Effects of Electrostatic 
Forces and Squeeze Film Damping on Microstructures  

 
 
 
In this chapter we investigate the nonlinear effects of electrostatic forces, which behave 

as a negative quadratic nonlinearity, and squeeze film damping on the response of 

microstructures under shock. The results are illustrated in a series of shock spectra which 

clearly indicate how the microstructures respond. This investigation helps take MEMS 

designers a step forward onto realizing the reliability of their microstructures under shock 

and sheds light on the importance of accounting for the combined effects of shock with 

common MEMS nonlinearities.  

 
 

3.1 Problem Formulation 
 

We consider the modified SDOF model shown in Figure 3.1, which represents a typical 

electrostatically actuated parallel-plate MEMS device. The mechanical shock applied to 

the MEMS device can be modeled as a base excitation problem, as discussed in Chapter 

2, with the equation of motion of the microstructure written as 

                                  

)(
)(2 2

2

tym
zd

AV
fkzzczm dc

squeeze ɺɺɺɺɺ −
−

=+++
ε

                     (3.1) 

where ε  is the dielectric constant of the gap medium, A is the electrode area of the 

microstructure, d is the capacitor gap width, DCV  is the DC polarization voltage, and z 
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and )(tyɺɺ  are as defined in Chapter 2. The squeeze film term 
squeezef  is expressed using the 

Blech model (Blech, 1983) defined in Chapter 2. 

 

 
 

Figure 3.1: A single-degree-of-freedom model of a typical electrostatically actuated 
parallel-plate MEMS device. 

 
 

3.2 Case Study: Capacitive Accelerometer 
 

Three different samples of a commercial off-the-shelf capacitive accelerometer (Figure 

3.2), fabricated by Sensata Technologies (Sensata Technologies), are used for the 

simulation and experimental investigation. We label them as sample a, b, and c. The 

samples are made up of two alloy 42 cantilever beams of thickness 150 µm and a proof 

mass (approximately of length = 9.0 mm and width 5.32 mm) attached to their tips. The 

proof mass forms one side of the capacitive electrode used for detection. The samples are 

identical in their geometrical properties. The differences between the samples are in the 

stiffness of the cantilever beams and the gap separating the proof mass from the substrate. 
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The extraction of some of these parameters is discussed in more details in Section 3.6 of 

this chapter. Table 3.1 gives a summary of the different parameters for each sample. 

 
        (a)           (b) 

 
Figure 3.2: (a) The capacitive accelerometer taken-apart. (b) A picture for the 

capacitive accelerometer, fabricated by Sensata Technologies (Sensata 
Technologies).  

 

Table 3.1: Summary of extracted parameters for each sample of the capacitive 
accelerometer. 

Parameter Sample a Sample b Sample c 
Stiffness k (N/m) 124 350 282 
Electrode separation d (µm) 49 37.5 36.16 
Natural frequency 

MEMSω (Hz) 187 187 187 

Linear damping coefficient ζ 0.5 0.4 0.5 
Pull-in voltage     (Volt) 112 124.9 155 

 
 

3.3 Effect of the Electrostatic Force on the Shock Spectrum 
under Low Damping 

 

In this case we investigate the effect of the electrostatic force on the shock spectrum. We 

assume the microstructure to have a linear damping ratio of ==
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of low linear damping ratio is typical for a microstructure operating at reduced pressure, 

such as resonant sensors. Two cases of shock loads of 1 g and 2 g are investigated. It is 

worth to mention that a shock value of 3 g is sufficient to make the proof mass of the 

device hit the substrate. The squeeze film damping effects are negligible in this case (

squeezef = 0). Since Equation (3.1) is nonlinear, an analytical solution is not available. 

Hence, we use direct time integration of the equation of motion to obtain the shock 

spectrum. The direct time integration was done in Mathematica (Wolfram Research) 

using the second order Runge-Kutta method. 

It is important to note that applying the electrostatic force causes an initial static 

deflection of the proof mass, and applying the shock load thereafter causes the proof 

mass to oscillate about its new equilibrium position due to the electrostatic force. For the 

purpose of comparing with experimental results, all simulated shock spectra illustrated in 

this paper account for this new equilibrium position by subtracting the static deflection of 

the proof mass due to the electrostatic force after reaching its steady state from the total 

response, yielding only the dynamic component of the response.  

Figure 3.3 shows the simulation results of the nonlinear shock spectrum of the 

microstructure. The microstructure is subjected to a shock load of amplitude 1 g and 

various electrostatic loads. We can note from the figure that, as we raise the applied 

electrostatic force, the deflection of the microstructure increases significantly and the 

spectrum peak shifts to the right. This behavior shows that the electrostatic force here 

acts as a softener to the microstructure. Young et al. (1963) observed the same behavior 

on a spring-mass-damper model with a cubic-softening spring term in the equation of 

motion. Also we can observe that as we increase VDC past 80 Volt, the microstructure 
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experiences pull-in for a range of shock durations. We will call this range of shock 

durations the pull-in zone or the escape zone. It is the zone at which the proof mass 

collapses onto the stationary electrode. It is important to mention that raising the 

electrostatic force decreases the natural frequency of the microstructure (Younis et al., 

2003). To make the obtained spectra of practical use for MEMS designers, all simulated 

shock spectra illustrated in this paper are normalized by the fundamental natural period of 

the microstructure at zero voltage (Tn at VDC of 0 Volt). Hence, the knowledge of the 

natural frequency of the structure before actuation is enough to be able to use these 

curves. 

Next we examine the effect of increasing the shock amplitude by subjecting the 

microstructure to a shock load of 2 g. We observe from Figure 3.4 the same behavior as 

with the 1 g shock load. However, the microstructure in this case pulls-in at a lower 

voltage of about 45 Volt. This agrees with the results reported in (Younis et al., 2006, 

2007) about the influence of both shock and electrostatic forces. 

 
Figure 3.3: Nonlinear shock spectra of a capacitive accelerometer when subjected to 

a shock of 1 g and various electrostatic loads (ζ = 0.006). 
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Figure 3.4: Nonlinear shock spectra of a capacitive accelerometer when subjected to 

a shock of 2 g and various electrostatic loads (ζ = 0.006). 
 
 

3.4 Effect of Squeeze Film Damping on the Response of the 
Capacitive Accelerometer 

 

Next we demonstrate the squeeze film damping effects on the response of the 

microstructure when operated in air at atmospheric pressure Pa without electrostatic 

force. The SQFD is modeled using the Blech model (Blech, 1983), which is defined in 

details in Chapter 2. It is a highly nonlinear phenomenon, related to the motion of the 

microstructure. In the case of the capacitive accelerometer, if the proof mass is moving 

away from the substrate, SQFD has small effect. However; if the proof mass moves 

towards the substrate, SQFD becomes significant. Figure 3.5 shows previously obtained 

experimental and simulation results, which give a clearer explanation to the behavior of 

SQFD (Younis et al., 2007). 
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Figure 3.5: Simulation results (stars and diamonds) and experimental data (circles 
and squares) of the proof mass deflection with shock amplitude when T = 5.0 ms, 

when operated in air at atmospheric pressure Pa. In the figure, shock down means 
the proof mass moves away from the substrate (Younis et al., 2007) 

 
 
 

3.5 Effect of the Electrostatic Force and Squeeze Film 
Damping on the Shock Spectrum 

 

Next, we examine the combined effects of the electrostatic force and squeeze film 

damping. We use a linear damping value of 0.4, which is obtained experimentally for the 

capacitive accelerometer (Younis et al., 2007), in addition to the SQFD term. Figures 3.6 

and 3.7 depict the nonlinear spectrum of the MEMS device when subjected to shock 

loads of 1 g and 3 g respectively. By comparing Figures 3.3 and 3.6, we note that in 

Figure 3.3, with a voltage of 85 Volt, the microstructure reaches pull-in while in Figure 

3.7, at a voltage of 90 Volt, the normalized defection does not exceed a ratio of 1.8 (no 

pull-in). This clearly indicates that SQFD suppresses the motion of the microstructure.  
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Figure 3.6: Nonlinear shock spectra of a capacitive accelerometer when subjected to 
a shock of 1 g and various electrostatic loads assuming squeeze film damping effect 

and ζ = 0.4. 

 
Figure 3.7: Nonlinear shock spectra of a capacitive accelerometer when subjected to 
a shock of 3 g and various electrostatic loads assuming squeeze film damping effect 

and ζ = 0.4. 
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behavior, which is well illustrated through Figures 3.6 and 3.7. If we take a closer look at 

Figure 3.6, we note that the microstructure at an applied voltage of 100 Volt is 

approaching pull-in in the quasi-static region and its deflection is highly suppressed in the 

dynamic region. Due to this behavior, the nonlinear spectrum does not have pull-in zones 

similar to those observed in Figures 3.3 and 3.4, because once the microstructure pulls-in 

at a given shock duration, it will continue to do so for longer shock durations, where the 

response will always be quasi-static. 

 

 

3.6 Experimental Results on the Effects of Electrostatic 
Forces and Squeeze Film Damping 

 

Several experiments were conducted to extract key parameters of the capacitive 

accelerometer, which were used throughout this paper in the simulations. Experimental 

work was also conducted to compare theory to experimental data. The following sections 

discuss the details of the experimental setup, the parameters extraction, and results. 

 

3.6.1 Experimental setup 
 
Figures 3.8a and 3.8b show the experimental setup used to investigate the effects of 

electrostatic forces and squeeze film damping on the response of the capacitive 

accelerometer when operated in atmospheric pressure. The device was mounted on a 

shaker head and connected to a VDC supply via a small electrical circuit. Current limiting 

resistors were used in the circuit to avoid failure of the device in the case of pull-in. A 

reference accelerometer was also mounted on the shaker head to monitor the value of 

shock applied to the device. A laser vibrometer was used to monitor the response of the 
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device proof mass. All input and output signals were controlled using the LabView 

software and through a Data Acquisition (DAQ) card.  

Figures 3.9a and 3.9b show the experimental setup used to investigate the effect of 

electrostatic forces on the capacitive accelerometer in reduced pressure environment 

(negligible squeeze film damping). The setup is similar to the previous one. However in 

this case, a small shaker was placed inside a vacuum chamber. The vacuum chamber is 

equipped with a window made of quartz glass to allow the penetration of the laser signal 

without distortion. 
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(b) 

 
Figure 3.8: (a) Schematic of the experimental setup and the data acquisition system. 

(b) A picture of the experimental setup used for testing the device in air. 
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(a) 

 

 
(b) 

 
Figure 3.9: (a) A picture of the experimental setup used for testing the capacitive 
accelerometer at reduced pressure. (b) A picture of the shaker used to generate 

shock pulses inside the vacuum chamber. 
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3.6.2 Parameter extraction 
 
The first parameter extracted was the cantilevers stiffness, which are attached to the proof 

mass. The device was actuated using various VDC, and the transient response of the proof 

mass was monitored using the laser vibrometer. Figure 3.10 shows the data obtained 

experimentally for sample b. The stable solution of Equation (3.2), which is the static 

version of Equation (3.1), was used to curve fit the experimental data. Based on this, a 

stiffness coefficient k of 350 N/m was obtained. 
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                                 (3.2) 

 
Figure 3.10: Variation of the proof mass displacement normalized by the gap 

spacing underneath the proof mass d for various values of VDC. Shown in the figure 
both the simulation and experimental data. 
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response of the proof mass, which was monitored using the laser vibrometer. As 

indicated in the figure, the gap d is close to 37.5 µm for sample b.  

Finally, the vibration response of the device was measured to identify the natural 

frequency and linear damping ratio (Younis et al., 2007). A continuous random signal 

was used to drive the shaker. Using a curve fitting technique, the fundamental natural 

frequency of the device was found to be 187 Hz, with an estimated linear damping ratio 

(ζ) of about 0.4 for sample b. 

 

.  
Figure 3.11: The measured transient response of the proof mass for a voltage 

beyond the pull-in voltage. 
 
 
3.6.3 Results and comparison with simulation 
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the shock pulse was a full sine shape, while for small shock durations the shock pulse 

0 1000 2000 3000 4000 5000 6000
-40

-35

-30

-25

-20

-15

-10

-5

0

5

Time (ms)

R
e
la

tiv
e
 d

e
fle

ct
io

n
 (µm

)

-37.5 µm 



www.manaraa.com

45 

  

was of a half-sine pulse shape. The transient response was monitored. Two displacement 

measurements were obtained using the laser vibrometer, one for the absolute motion of 

the accelerometer and the other for the substrate motion. By subtracting the two 

measurements, the displacement of the proof mass relative to the substrate was obtained. 

Figures 3.12a and 3.12b show an example of an applied shock and the corresponding 

transient response of the microstructure, respectively.   

 
(a) 

 
(b) 

Figure 3.12: (a) Applied shock of 1 g at a shock duration of T = 2.2 ms. (b) Transient 
response of the proof mass of sample b when subjected to mechanical shock at 80 
Volt, as monitored through the laser Doppler vibrometer. The measured value of 

pressure is equal 176 mtorr. 
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3.6.3.1 Effect of electrostatic forces on the shock spectrum in reduced 

pressure conditions 

Here, the device is operated on the setup of Figure 3.9 (inside the vacuum chamber). 

Figures 3.13-3.15 compare the simulation and experimental results, where the device was 

subjected to a mechanical shock of 1 g and VDC of 0 Volt, 80 Volt, and 85 Volt, 

respectively. In Figures 3.13-3.15, the dynamic amplitude response is normalized by an 

equivalent static response of a static force with the same magnitude as the shock. The 

figures show good agreement between simulation and experimental results. We notice 

from Figure 3.15 that the experiment and simulation deviate slightly in predicting the 

pull-in zone. This can be attributed to the fractal nature of dynamic pull-in, which makes 

it depend on the initial conditions of the system. Another aspect contributing to this 

deviation is due to the shaker used. The shaker induced a magnetic field which in turn 

affected the response of the microstructure, acting almost as a damper, opposing the 

microstructure from reaching pull-in.  

 
Figure 3.13: Simulation versus experimental results for the accelerometer shock 

spectrum when subjected to a shock of 1 g at 0 Volt. The measured value of pressure 
is equal 190 mtorr. 
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Figure 3.14: Simulation versus experimental results for the accelerometer shock 

spectrum when subjected to a shock of 1 g at 80 Volt. The measured value of 
pressure is equal 176 mtorr. 

 
Figure 3.15: Simulation versus experimental results for the accelerometer shock 

spectrum when subjected to a shock of 1 g at 85 Volt. The measured value of 
pressure is equal 169 mtorr. 
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3.6.3.2 Effect of electrostatic forces and squeeze film damping on the 

shock spectrum 

Here, the device is tested in atmospheric pressure Pa using the setup shown in Figure 3.8. 

Figures 3.16 and 3.17 compare the simulation and experimental results, where the device 

was subjected to a mechanical shock of 3 g and VDC of 0 Volt and 60 Volt, respectively. 

The figures show good agreement between simulation and experimental results. 

Furthermore, this proves the observed behavior through simulations, where the increase 

of the actuation VDC softens the device, causing larger deflections. 

It is important to note that the experimental data was obtained only for a small range of 

shock durations due to restrictions of both the shaker and laser vibrometer. For large 

shock durations, the response was quasi-static when subtracting the two measurements, 

which was not well captured by the laser vibrometer. When the shock duration was too 

small, it was close to the natural period of the shaker, which caused disturbances in the 

signal. In Section 3.6.3.1, experimental results were obtained even for small shock 

durations because a different shaker was used that fits inside the vacuum chamber.  
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Figure 3.16: Simulation versus experimental results for the accelerometer shock 
spectrum when subjected to a shock of 3 g at 0 Volt, while operating at ambient 

pressure Pa. 

 
Figure 3.17: Simulation versus experimental results for the accelerometer shock 
spectrum when subjected to a shock of 3 g at 60 Volt, while operating at ambient 

pressure Pa. 
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Chapter 4. Investigation on the Effect of PCB Motion 
on Microstructures  

 
 
 
A typical microstructure of a commercialized device is packaged and placed on a printed 

circuit board (PCB) as shown in Figure 4.1. Because the microstructure and the PCB are 

flexible structures, the interaction of their motion can be significant. This section aims to 

understand the motion consequences due to the motion of the PCB in response to shock, 

which may cause stiction and short circuit problems due to the impact of microstructures 

among themselves and with the substrate. 

 

 
Figure 4.1: Schematic of a typical microstructure mounted on a printed circuit 

board. 
 
 
 

4.1 Problem Formulation 
 

We use a 2-DOF model, Figure 4.2, to study the PCB effect on the response of a MEMS 

device under shock load (Alsaleem, 2007). The first DOF accounts for the PCB motion 

and the second DOF represents the motion of the microstructure, such as a beam or a 

plate, which is mounted over the PCB. Shown in Figure 4.2 are km: microstructure 

stiffness, kPC : PCB stiffness, cm: microstructure damping, cPC : PCB damping, mm: 
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microstructure mass and mPC : PCB mass. In this model, we assume the MEMS device to 

be placed on the center of the PCB, which represents a worst-case scenario. The 

governing equations of motion of the system are given by  

               
0)()( =−+−+ PCmmPCmmmm xxcxxkxm ɺɺɺɺ                        (4.1) 

  

)()(2 PCmmPCmmp xxcxxkxm ɺɺɺɺ −−−−
 

           ycykxcxk PCPCPCPCPCPC ɺɺ +=++        (4.2) 

 
where y and yɺ  are the displacement and velocity of the assembly base, respectively, xm 

represents the motion of the microstructure and xPC represents the motion of the PCB. 

The base acceleration yɺɺ  is assumed to be a half sine pulse of amplitude Ao, as defined in 

Chapter 2. Equations (4.1) and (4.2) are integrated numerically with time to obtain the 

dynamic response. 

 

 
 

Figure 4.2: MEMS-PCB assembly subjected to a base acceleration. 
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4.2 Simulation and Experimental Results 
 

Two PCBs shown in Figure 4.3 were used to investigate the effect of the PCB motion on 

the motion of sample a of the capacitive accelerometer. This work has been conducted in 

collaboration with Mr. Alsaleem from our group (Alsaleem et al., 2009). The first 

investigation was using PCB1 shown in Figure 4.3a, which has a natural frequency of 6 

kHz, that is far from the accelerometer’s natural frequency with a ratio of MEMsP ωω /  = 6 

kHz/ 187 Hz = 32. The accelerometer was mounted over PCB1, and the PCB was fixed 

using four screws to the head of the shaker. Figure 4.4 compares simulation and 

experimental results for the shock spectrum of the accelerometer with and without being 

mounted on the PCB. This figure shows a good agreement between simulation and 

experimental results. Figures 4.4a and 4.4b show that with the high ratio between the 

PCB and accelerometer’s natural frequency, the PCB has no effect on the accelerometer 

motion, i.e., it transfers the shock load to the MEMS device without any alteration 

(Alsaleem et al., 2009).  

 

    

    (a) PCB1 ( Pω = 6 kHz)            (b) PCB2 ( Pω = 230 Hz) 
Figure 4.3: A picture for the two PCBs used for testing. Figure 4.3b shows PCB2 

placed over the shaker head. 
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(a) 

 
(b) 

 
Figure 4.4: Shock spectrum of sample a obtained theoretically and experimentally. 

(a) Including the PCB effect. (b) Without including the PCB effect. 
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Next, the accelerometer was mounted over PCB2 shown in Figure 4.3b. The ratio of the 

natural frequency of PCB2 to the accelerometer’s natural frequency is 1.23. Figure 4.5 

compares simulation and experimental results for the shock spectrum of the 

accelerometer when mounted on PCB2. This figure shows a good agreement between 

simulation and experimental results. In a comparison between Figures 4.4b and 4.5 we 

find that at this specific ratio between the PCB and MEMS device, the response of the 

microstructure is amplified. This is because the natural frequency of the PCB is near that 

of the microstructure.  

Figure 4.6 shows a sample of the transient response of the device with PCB2 (dynamic 

response amplification) and without PCB2 (static response with no amplification), due to 

shock loads of T = 5.0 ms.  This figure shows a significant amplification for the response 

of the device due to the dynamic effect of the poor-designed PCB. Note that without a 

PCB, the device responds quasi-statically to shock loads. Hence, the PCB here has 

adverse effect on the performance of the device. The figure shows a drift in the 

measurement where the microstructure reaches a transient response of about -20 µm, 

while it should reach zero. This is due to the laser vibrometer not restarting from zero 

with every measurement. We can also observe from the figure a nonlinear behavior in the 

microstructure response with a PCB. This behavior is characterized by the fact that the 

microstructure is able to deflect freely away from the substrate reaching a relative 

deflection of -100 µm while it is suppressed going towards the substrate and that is due to 

the presence of SQFD. 
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Figure 4.5: Simulation Vs experimental results for the shock spectrum of sample a 
including the effect of PCB2. 

 
 

Figure 4.6: Transient response of the microstructure with and without PCB2, when 
subjected to a mechanical shock as monitored through a Laser Doppler Vibrometer 

(T = 5.0 ms). 
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Chapter 5. Enhancing the Sensitivity of a Resonant 
Accelerometer and its Use as a Switch  

 
 
 
In this chapter we investigate the sensitivity enhancement of a resonant accelerometer by 

operating it in the nonlinear regime. The accelerometer is excited by a DC load 

superimposed to an AC harmonic load. The operation of the accelerometer at both 

primary and sub-harmonic resonance is investigated. The concept of the nonlinear 

excitation is demonstrated by simulation on a commercial capacitive accelerometer. This 

chapter also focuses on the use of the nonlinearities arising from the electrostatic forces 

to realize a switch triggered by acceleration.  

 
 

5.1 Problem Formulation 
 

We begin by considering the SDOF model shown in Figure 5.1, utilized to represent a 

structure of linear stiffness, which can be a microstructure of a MEMS device. This 

model is similar to the model adopted by Sung and Lee (2000). 

The governing equation of motion of the microstructure can be written as  

                                     
ma

xd

tVVA
kxxcxm ACDC +

−
Ω+=++

2

2

)(2

)cos(ε
ɺɺɺ               (5.1) 

where x is the deflection of the proof mass, the superscript dot denotes time derivative, m 

is the mass, c is the viscous damper coefficient, k is the stiffness of the microstructure, ε 

is the dielectric constant of the gap medium, A is the electrode area of the microstructure, 

d is the capacitor gap width, VDC is the DC polarization voltage, and a represents the 
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input acceleration. The input acceleration here is considered a constant value, which can 

be assumed as a mechanical shock with a large shock duration (quasi-static). The 

parameters VAC and Ω are the AC harmonic load amplitude and frequency, respectively. 

 
 

Figure 5.1: A single-degree-of-freedom model (SDOF) of a typical parallel-plate 
MEMS resonator actuated electrically. 

 
 

In order to obtain the natural frequency of the microstructure, the response x(t) is 

assumed to be composed of a dynamic term dx  and a static term sx . Substituting for (

sd xxx += ) in Equation (5.1) we obtain: 

                          

ma
xxd

tCosVVA
xxkxcxm

sd

ACDC
sddd +

−−
Ω+

=+++
2

2

)(2

)(
)(

ε
ɺɺɺ                  (5.2) 

Next we use Taylor series expansion of the electrostatic force term about 0=dx , which 

yields: 

c k 

Fixed support 

m VDC 

Fixed electrode 

x(t) 
d VAC 

a 
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                            (5.3) 

where the higher order and nonlinear terms of the electrostatic force have been neglected. 

Substituting Equation (5.3) into Equation (5.2) yields the static and linearized dynamic 

equations of motion as follows: 

   Static:  ma
xd

AV
kx

s

DC
s +

−
=

2

2

)(2

ε
        (5.4) 

       Dynamic: d
s

ACDC
ddd x

xd

tCosVVA
kxxcxm

2

2

)(2

)(

−
Ω+

=++
ε

ɺɺɺ

      
(5.5) 

The static component has three possible solutions, one of which is a non-physical 

solution, as illustrated in Chapter 2. Figure 5.2 shows the other physical solutions. As 

seen in the figure, one of the solutions is stable and the other one is unstable. The stable 

solution will be used for the calculation of the natural frequency as shown below.   

We note from Equation (5.5) that the effective stiffness of the resonator is given by  

                                                       
3

2

)( s

DC
eff xd

AV
kk

−
−=

ε
                        (5.6) 

The effective stiffness expression is next used to approximate the natural frequency of the 

microstructure as follows 

                                    
3

2

)( s

DC
n

xdm

AV

m

k

−
−=

εω                  (5.7) 

As seen from Equation (5.7), the natural frequency of the microstructure decreases as we 

raise the DC voltage, which is known as a softening behavior (Younis et al., 2003). The 

working principle of the resonant accelerometer is as follows; an externally applied 

acceleration will change the equilibrium position of the resonator, as indicated by 
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Equation (5.4), particularly it will increase the value of sx . This in turn will cause a 

decrease in the linear natural frequency of the resonator, as indicated by Equation (5.7). 

This shift in frequency can be related to the applied acceleration.  

 
Figure 5.2: Variation of the normalized static deflection of the capacitive 

accelerometer with the DC voltage. 
 
 

5.2 Simulation Results 
 

In order to obtain a highly sensitive resonant accelerometer, investigations are conducted 

to monitor the effects of DC voltage, AC voltage, and acceleration on the frequency 

response curve of the microstructure. Analysis is first conducted using the linearized 

model of Equations (5.4) and (5.7), which assumes small values of AC voltages, to 

explore the effect of the DC voltage on the natural frequency. This mode of operation 

with small values of AC load represents the traditional method for operating resonant 

sensors (Burns and Horning, 1995). 
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Then, large values of AC voltages are assumed. In this case, the linearized model does 

not apply and therefore, we perform direct time integration based on the 4th order Runge-

Kutta technique for the equation of motion, Equation (5.1), to calculate the frequency 

response curve of the resonator before and after the external acceleration and determine 

the difference in the resonance frequency. 

As a case study, we use the mechanical parameters of sample b of the commercial 

capacitive accelerometer discussed in Chapter 3. A damping ratio of 0.05 is also 

assumed. 

 
5.2.1 The effect of the DC voltage and acceleration on the resonant 

frequency 
 

In this section we investigate the effects of the DC voltage on the resonant frequency of 

the microstructure under an applied acceleration based on Equations (5.4) and (5.7). 

 
Figure 5.3: Variation of the normalized frequency with the DC voltage for various 

values of acceleration. 
Figure 5.3 shows the resonant frequency of the microstructure normalized by the natural 

frequency of 187 Hz versus the applied DC voltage, for various accelerations. We can 
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observe that under zero acceleration, the change in the resonant frequency increases as 

the voltage increases and the resonant frequency approaches zero at the pull-in voltage 

(Younis et al., 2007). For an applied acceleration of 2 g, we observe the same behavior, 

however, the change in resonant frequency is more sensitive to the applied voltage and 

pull-in is reduced to about 60 Volt. 

Next, we further investigate the effect of acceleration on the resonant frequency of the 

microstructure under an applied DC voltage. Figure 5.4 shows the normalized frequency 

versus the applied acceleration for various DC voltages. We observe through the figure 

that increasing the applied acceleration has the same effect as applying DC voltage. The 

applied acceleration softens the microstructure and causes a change in its resonant 

frequency. 

 
Figure 5.4: Variation of the normalized frequency with acceleration for various DC 

voltages. 
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5.2.2 The effect of AC load on the frequency response 
 
Figure 5.5 gives a schematic of the frequency response shift due to acceleration and 

shows the difference between a linear shift, which can be obtained using long-time 

integration, and the nonlinear shift (bend) in the frequency response curve which can only 

be obtained using whether shooting or long-time integration. However, it is estimated 

more accurately using the shooting method of Section 5.3.  

 

Figure 5.5: A schematic showing the difference between a linear and a nonlinear 
shift in the frequency response plot. 

 

The linearized model introduced in the previous section is sufficient in showing the 

effects of DC voltage and acceleration on the resonant frequency of the microstructure; 

however, it is not capable of capturing the nonlinear effect of the AC harmonic load. 

Figure 5.6 shows a comparison at a DC voltage of 30 Volt, between the linearized model 

and the frequency response model, for two values of AC harmonic loading. It is clear that 
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for a small AC load, the models are in good agreement. However, as the AC load is 

raised to higher values, there is significant deviation between the two models. 

 
Figure 5.6: A comparison of the resonant frequency predicted using a linearized 

model to that using the forced-response model. 
 
 
In the following section, the effects of DC voltage, AC harmonic load and acceleration 

are investigated. For each DC voltage a number of AC harmonic loads are applied and 

the sensitivity of the microstructure under acceleration is studied. Equation (5.1) was 

integrated numerically for a long time using Runge-Kutta scheme to obtain a steady-state 

solution.  
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withstand, beyond which it experiences pull-in. In other words, taking the case of 40 Volt 

in Figure 5.7 as an example, an applied acceleration of 0.6 g is the limit of stable 

operation of the accelerometer, beyond which the accelerometer undergoes pull-in. This 

behavior can be used to our advantage, if we intend to realize a trigger or a switch. 

 
Figure 5.7: Device sensitivity to acceleration at a VDC of 30 Volt and for various AC 

harmonic loads. 

 
Figure 5.8: Frequency response curves showing the resonant frequency shift 

between 0 g and 0.15 g, for an applied VDC of 30 Volt and VAC of 40 Volt. 
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The frequency shifts shown in Figures 5.8 and 5.9 each represents one point in Figure 

5.7. By comparing the two figures, we can note that increasing the applied acceleration 

raises the frequency shift, which was demonstrated through the linearized model. If we 

look at Figure 5.6 at an applied acceleration of 0.6 g, we find that the frequency shift at 

an AC voltage of 40 Volt is about 7.8 Hz, while at a voltage of 20 Volt, it is only 1 Hz. 

The frequency shift is significantly increased by raising the AC loading. This clearly 

shows that increasing the AC harmonic load raises the sensitivity of the device. 

 
Figure 5.9: Frequency response curves showing the resonant frequency shift 

between 0 g and 0.6 g, at an applied VDC of 30 Volt and VAC of 40 Volt. 
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5.2.2.2 DC voltage of 40 Volt 

For an applied DC voltage of 40 Volt, AC harmonic loads of 20 Volt, 30 Volt, and 40 Volt 

were used and the sensitivity of the device to acceleration under these loading conditions 

is shown in Figure 5.10. We observe the same behavior when raising the AC harmonic 

load. It is clear however that also raising the DC voltage enhances the sensitivity of the 

device. Figure 5.11 shows a closer look for the case of an applied acceleration of 0.16 g. 

As seen in the figure, the frequency shift is about 5.4 Hz, while in Figure 5.7, at the same 

applied harmonic load and acceleration, the frequency shift is less than 0.6 Hz. This is 

also illustrated visually by comparing Figures 5.8 and 5.12, where for the same applied 

harmonic load and acceleration, the frequency shift is larger for the higher DC voltage of 

40 Volt, compared to 30 Volt. We can also observe the same behavior in Figure 5.10, as 

in Figure 5.7. For each given AC harmonic load, raising the acceleration brings the 

accelerometer closer to its limit of stable operation, unless once again we intend to use it 

as a trigger or a switch. 

 
 

Figure 5.10: Device sensitivity to acceleration at a VDC of 40 Volt and for various AC 
harmonic loads. 
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Figure 5.11: A closer view of Figure 5.10 for a VAC of 40 Volt. 

 

 
 

Figure 5.12: Frequency response curves showing the resonant frequency shift 
between 0 g and 0.15 g, at an applied VDC of 40 Volt and VAC of 40 Volt. 
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5.2.2.3 DC voltage of 50 Volt 

Finally, the last DC voltage investigated was 50 Volt, with AC harmonic loads of 20 Volt, 

25 Volt, 30 Volt, and 34 Volt. The sensitivity of the device to acceleration under these 

loading conditions is shown in Figure 5.13. The same conclusions are drawn on the 

effects of the AC harmonic loading, DC voltage and acceleration. The major addition of 

this analysis is that it shows the highest sensitivity reached which is illustrated in Figure 

5.14. It shows that the device at a DC voltage of 50 Volt and an AC harmonic load of 34 

Volt is sensitive to applied accelerations as small as 0.02 g, giving a frequency shift at 

that value of about 1.75 Hz. Once again we find the same behavior as observed earlier, 

raising the acceleration brings the accelerometer closer to its limit of stable operation, 

beyond which it experiences pull-in. 

  
 

Figure 5.13: Device sensitivity to acceleration at a VDC of 30 Volt and for various AC 
harmonic loads. 
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Figure 5.14: A closer view of Figure 5.12 for a VAC of 34 Volt. 
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difference between the newly corrected set of initial guesses and the previous ones 

diminishes to very small values. Once a periodic motion is captured, its stability is 

determined using the Floquet theory. Next, we discuss the procedure as it is applied to the 

equation of motion of the resonator studied in this chapter.  

We utilize a nonlinear single-degree-of-freedom model to simulate the resonator response 

due to VDC plus VAC electric loading. The equation of motion governing the behavior of 

the resonator can be written as  

    ( )
2

2

[ cos( )]

2
DC ACA V V t

mx cx kx
d x

ε + Ω+ + =
−

ɺɺ ɺ               (5.8) 

For convenience, we normalize the equation of motion by introducing nondimensional 

variables (denoted by superscript ^) as below  

  d

x
x =ˆ

 
, 

T

t
t =ˆ           (5.9) 

where 2 / nT π ω=  and /n k mω = . Substituting Equation (5.9) in (5.8) yields the 

nondimensional equation of motion:  

    =++ xxcx ˆˆˆˆ ɺɺɺ

( )
2

2

ˆ[ cos( )]

ˆ1
DC ACV V t

x
α + Ω
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              (5.10) 

where ˆ 2
c

c
km

ζ= =
 
; 322 dm

A

nω
εα =

 

Next, we write Equation (5.10) in state-space representation; hence we let xX ˆ1 = , and 

xX ˆ
2 ɺ=  to yeild :

 

            21 XX =ɺ                    (5.11) 
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       +−−= 212 ˆXcXXɺ
( )

2
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DC ACV V t

x
α + Ω

−
       (5.12) 

For this second order system, we need to search for an appropriate set of intial conditions 

( 1 2,η η ) that yeilds periodic solution for Equations (5.11) and (5.12). To proceed with the 

shooting technique, we define the follwing variables 

1
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ɺ

 

The shooting technique requires solving Equations (5.10) and (5.11) along with the below 

system of differntial equations, which are  

     53 XX =ɺ         (5.13) 

     64 XX =ɺ         (5.14) 
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(5.16) 

The initial conditions for Equations (5.11 - 5.16) are  
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where  ( 10 20,η η ) are the intial guesses for the initial conditions, which lead to periodic 

motion. Then, we intergrate Equations (5.11 – 5.16) subjected to the intial conditions 

(5.17) over the duration of one period T. Subsequently, we calculate the values of  X3 – X6 

at time T, substitute them in the below algebric system of equations, and solve for the 

error in the intial conditions ( 1η∂ , 2η∂ ).  

   

[ ]3 4 10 10 201

5 6 20 10 202

( , , )

( , , )

X X x T
I

X X x T

η η ηη
η η ηη

  −∂     − =      −∂       ɺ
    

(5.18) 

 The procedue is repeated until the errors are minimized and a convergernce is achieved.  

The next step after obtaining the periodic motion is to analyze its stability. This can be 

done by solving for the eigenvalue of the manadromy matrix  3 4

5 6

X X

X X

 
 
 

, which yeilds 

the two Floquete multiplieres. If the  absoulte values of both Floquete multiplieres are 

less than unity then the perioidc motion is stable, otherwise it is considered unstable.   

Figure 5.15 shows a verification of the shooting technique when compared with the time 

integration solution. 
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Figure 5.15: Frequency response for VDC = 30 Volt, VAC = 40 Volt and 0.58 g. (solid 
blue - shooting technique, black circles - time integration) 
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5.3.1.1 Sensitive switch triggered by acceleration at primary resonance 

We observed from Figures 5.7-5.14, obtained using the long-time integration method, 

how the accelerometer can be used also as a switch triggered by acceleration, however, 

with limited sensitivity. In this section we use a more accurate method, shooting method, 

to further investigate the capability of using the accelerometer as a sensitive switch 

triggered by acceleration by operating it at primary resonance (Ω ≈ ωn). Figure 5.16 

represents the highest sensitivity obtained for a switch operating at primary resonance, 

showing sensitivity to accelerations as small as 0.02 g. The working principle is as 

follows: if we operate the microstructure at a frequency of about 142 Hz, the 

microstructure lies on the frequency response curve, giving a stable solution (Figure 

5.17a). Once the microstructure experiences an acceleration of about 0.02 g, the 

frequency response curve shifts to the left, and the microstructure suddenly is operating 

in the escape band and therefore pulls-in (switch on), as seen in Figure 5.17b. 

 

Figure 5.16: Frequency response curves for various accelerations in the case of 
primary resonance when VDC = 60 Volt and VAC = 50 Volt. 
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(a) At no applied acceleration. 

 

(b) Subjected to an acceleration of 0.02 g. 

Figure 5.17: The time history of the accelerometer response when excited by VDC = 
60 Volt, VAC = 50 Volt and operating at a frequency Ω = 142 Hz.  
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is a grid of initial conditions. For each set of initial conditions, we integrate the equation 

of motion and look at the stability of the solution. If the solution is stable, the set of initial 

conditions are represented as a white point on the phase plane. If the solution is unstable, 

the set of initial conditions are represented as a black point. Looking at Figure 5.18b, we 

find that no stable solution exits for the microstructure, which is expected as it is 

operating in the escape band. However, in Figure 5.18a, there is only a very small set of 

initial conditions at which the microstructure is stable. This raises concerns about the 

stability of the resonator and how reliable it is before detection of acceleration. 

 

(a) At no applied acceleration 

 

(b) Subjected to an acceleration of 0.02 g. 

Figure 5.18: Basin of attraction of the capacitive accelerometer excited by VDC = 60 
Volt, VAC = 50 Volt and operating at a frequency Ω = 142 Hz (safe basin - white, 

unsafe basin - black). 
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5.3.1.2 Sensitive switch triggered by acceleration at sub-harmonic 

resonance 

Similar to the previous section, we investigate the capability of using the accelerometer 

as a sensitive switch triggered by acceleration but this time operating at sub-harmonic 

resonance (Ω ≈ 2ωn). Figure 5.19 represents the highest sensitivity obtained for a switch 

operating at sub-harmonic resonance, showing sensitivity to accelerations as small as 0.1 

g. We can note from Figure 5.19 that before applying the acceleration, the sub-harmonic 

resonance was inactivated. Applying the acceleration caused a sharp jump in the 

accelerometer response, which is very desirable for switching applications. 

 

Figure 5.19: Frequency response curve for the case of sub-harmonic resonance 
when VDC = 50 Volt, and VAC = 89 Volt. (Solid black – 0 g, circles - 0.1 g, dashed red - 

unstable solution). 
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(a) At no applied acceleration. 

 

(b) Subjected to an acceleration of 0.1 g. 

Figure 5.20: The time history of the accelerometer response when excited by VDC = 
50 Volt, VAC = 89 Volt and operating at a frequency Ω = 340 Hz. 
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Figure 5.21a, there is only a very small set of initial conditions at which the 

microstructure is stable. 

 

(b) At no applied acceleration. 

 

(b) Subjected to an acceleration of 0.1 g. 

Figure 5.21: Basin of attraction of the capacitive accelerometer excited by VDC = 50 
Volt, VAC = 89 Volt and operating at a frequency Ω = 340 Hz (safe basin - white, 

unsafe basin - black). 
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Chapter 6. Reliability of Resonant Sensors under 
Mechanical Shock, Driven by DC and AC Load 

 
 
 
In this chapter we investigate the effects of mechanical shock on the response of a 

resonant sensor. Resonant sensors typically operate at low pressures for enhanced 

sensitivity, which makes their response to external disturbances such as shock a major 

issue. The simulation results are demonstrated in a series of shock spectra that help 

indicate the combined effects of shock and the existing nonlinearities from the 

electrostatic forces. The effect of the shock duration coinciding with the AC harmonic 

load frequency is also investigated. It is found that for specific shock and AC excitation 

conditions, the resonator might experience an early dynamic instability. This may lead to 

unexpected failure of the resonator. The theoretical and experimental works of this 

chapter are based on sample c of the capacitive device in Chapter 3. 

 
 

6.1 Problem Formulation 
 

A typical parallel-plate electrostatically driven resonator can be represented by the SDOF 

model shown in Figure 5.1 in Chapter 5. The equation of motion is given by Equation 

(6.1). Here, the acceleration term is represented as a base excitation )(tymɺɺ , where )(tyɺɺ  is 

the half-sine pulse as defined in Chapter 2. 
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Next, we use long time integration of Equation (6.1) to obtain the microstructure 

response.  

 

6.2 Defining Shock Spectrum due to AC Load 
 

Studying the nonlinear effects of the AC harmonic load on the shock spectrum can be 

challenging, due to the oscillatory motion of the resonator. The proof mass of the 

resonator oscillates away and towards the substrate, and the time at which the mechanical 

shock is applied can either attenuate the microstructure response or amplify it. In some 

cases, amplifying the response of the resonator can lead to pull-in. Figure 6.1 gives an 

example of the simulated response of the resonator to the combination of electrostatic 

forces and shock, showing the shock applied at two different times. For Figure 6.1a, the 

shock amplifies the resonator response up to about 25 µm. For Figure 6.1b, with the 

shock being applied just 2.3 ms later, the shock attenuates the response of the resonator to 

about 4 µm before it goes back to the level of vibrations before shock.  

Figure 6.1 indicates how critical it is to account for the time at which the shock is applied 

to the resonator. In order to account for this effect, for a given value of shock duration T, 

the shock is applied at various time instances (TAP) during one full steady-state oscillation 

of the resonator. In other words, if the resonator oscillating period is TAC, the shock is 

applied at various fractions of TAC. For each time instance of the applied shock, the 

maximum displacement of the resonator is calculated. To capture the worst case scenario 
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of the response, the maximum displacement is calculated by comparing the results of all 

time instances. Figure 6.2 shows a plot of the resonator maximum response to an applied 

shock of 1 g, applied at different times of two full cycles of oscillations of the resonator. 

In Figure 6.2, the normalized time scale is the time instance of shock application TAP 

normalized by the resonator response time TAC. 

The final step in obtaining the shock spectrum is to repeat the same procedure and obtain 

data similar to Figure 6.2 for each shock duration. From this figure, one data point is 

obtained to be used in the shock spectrum. Figure 6.3 shows an example of a shock 

spectrum of the resonator due to shock, DC load, and an AC load for the case when the 

resonator is excited at resonance. 

 

(a) Mechanical shock applied at time equals 680 ms. 
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(b) Mechanical shock applied at time equals 682.3 ms. 

Figure 6.1: Time history response of sample c of the resonator at VDC = 30 Volt, VAC 
= 15 Volt, T = 5 ms, a shock of 1 g, and operating at a frequency Ω = ωn. The 

damping ratio is assumed ζ = 0.006. 

 

Figure 6.2: Maximum response of sample c of the resonator to an applied shock of 1 
g and T = 5 ms, applied at various times during two oscillations of the 

resonator, where VDC = 30 Volt, VAC = 15 Volt and operating at a frequency Ω 
= ωn. The damping ratio is assumed ζ = 0.006. 
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Figure 6.3: Nonlinear shock spectrum of sample c of the resonator at an applied 
shock of 1 g, where VDC = 30 Volt, VAC = 15 Volt and operating at a frequency Ω = 

ωn. The damping ratio is assumed ζ = 0.006. 
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linear damping ratio of ==
nm

c

ω
ζ

2
0.006. This value of low linear damping ratio is 

typical for a resonator operating at reduced pressure. 

 

6.3.1 Effect of the AC harmonic load on the shock spectrum 
 
In this section we investigate the effect of the AC harmonic load on the shock spectrum 

of the resonator. Figures 6.4 and 6.5 depict the nonlinear spectrum of the resonator 

subjected to a shock load of 1 g, operating at a frequency Ω = ωn, and actuated by a VDC 

of 20 Volt, and 30 Volt; respectively. For the purpose of making a valuable qualitative 

comparison between the different applied AC harmonic loads, the maximum response of 

the resonator due to the DC and AC harmonic loads alone is subtracted from the total 

response. The figures show that the AC harmonic load has a softening effect on the 

resonator. As we raise VAC, the response of the resonator increases and we begin to obtain 

pull-in zones in the shock spectrum. As we raise the DC voltage, lower VAC is needed to 

cause the resonator to pull-in. This clearly shows that accounting for the effects of the AC 

harmonic load and the DC voltage when testing the reliability of the resonator under 

mechanical shock is crucial. It is important to note that at no applied shock, the resonator 

has a response due to the AC harmonic load. Figure 6.6 shows shock spectrums of the 

resonator for a shock load of 1 g and a combined DC and AC voltage of 40 Volt. 

Different combinations of the DC and AC loads are used to better demonstrate the effect 

of the AC harmonic load. For this particular figure, the spectrums show the total response 

of the resonator, without subtracting the effect of the AC harmonic load alone. The figure 

shows that the combination of the DC and AC loads has a more severe softening effect on 

the resonator, making it more sensitive to the applied shock. In the case of actuating the 



www.manaraa.com

86 

  

resonator by either the DC load alone, or the AC harmonic load alone, the response of the 

resonator to shock is less sensitive. 

 

Figure 6.4: Nonlinear shock spectrum of the resonator for various VAC at an applied 
shock of 1 g, where VDC = 20 and operating at a frequency Ω = ωn. The damping 

ratio is assumed ζ = 0.006. 

 

Figure 6.5: Nonlinear shock spectrum of the resonator for various VAC at an applied 
shock of 1 g, where VDC = 20 Volt and operating at a frequency Ω = ωn. The damping 

ratio is assumed ζ = 0.006. 
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Figure 6.6: Nonlinear shock spectrum of the resonator for a combined VAC and VDC 
of 40 Volt at an applied shock of 1 g, operating at a frequency Ω = ωn. The damping 

ratio is assumed ζ = 0.006. 
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Figure 6.7: Nonlinear shock spectrum of the resonator for various AC frequencies 
(Ω) at an applied shock of 1 g, where VDC = 20 Volt and VAC = 15 Volt. The damping 

ratio is assumed ζ = 0.006. 
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limiting resistors were used in the circuit to avoid failure of the device in the case of pull-

in. An analog function generator was used to generate the AC harmonic load. A reference 

accelerometer was also mounted on the shaker head to monitor the value of shock applied 

to the device. A laser vibrometer was used to monitor the response of the device proof 

mass. The shaker (Figure 3.10b) was placed inside the vacuum chamber. 

It is important to mention that it is extremely difficult to compare simulation and 

experimental results as was done in the previous chapters using the shock spectrum. This 

is because there is no way to explicitly control the instant of shock application during the 

experiment. It is also hard to hit the resonant frequency of the resonator using the analog 

function generator. In the presence of such difficulties, the most efficient way of 

comparison is by imitating the experimental conditions and comparing qualitatively the 

response of the resonator. Parameters such as the operating pressure, the AC frequency 

Ω, and most importantly the instant of shock application TAP were applied to the 

simulation model. The experimental input shock pulse shape was imported directly from 

the experiment and applied to the simulation model. The parameter TAP was 

approximated by carefully looking at the time history of the resonator response and the 

input shock. Three different cases were compared both theoretically and experimentally, 

where the resonator response was amplified, attenuated, or reached pull-in. 

 

6.4.1 Amplification of the resonator response 
 
In this case, the resonator was actuated with a VDC = 24.3 Volt, VAC = 18.92 Volt, and Ω = 

189 Hz. The resonator was operated at reduced pressure of 180 mtorr. Figure 6.8b shows 

the theoretical results and Figure 6.8c shows the experimental results for the studied case. 
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The results show that at a given shock of 1 g, the resonator response was amplified. The 

simulation and experimental results are in good agreement as observed from the figures. 

 

(a) Experimental input shock of 1 g at a total shock duration of T = 20 ms. 

 

(b) Simulated time history response of the resonator. 
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(c) Experimental time history response of the resonator. 

Figure 6.8: Theoretical and experimental results of the resonator when actuated 
with VDC = 24.3 Volt, VAC = 18.92 Volt, and Ω = 189 Hz. The operating pressure is 

equal 180 mtorr. 
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(a) Experimental input shock of 1 g at a total shock duration T = 10 ms. 

 

(b) Simulated time history response of the resonator. 
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(c) Experimental time history response of the resonator. 

Figure 6.9: Theoretical and experimental results of the resonator when actuated 
with VDC = 25 Volt, VAC = 17.96 Volt, and Ω = 188 Hz. The operating pressure is 

equal 200 mtorr. 
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(a) Experimental input shock of 1 g at a total shock duration T = 45 ms. 

 

(b) Simulated time history response of the resonator. 
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(c) Experimental time history response of the resonator. 

Figure 6.10: Theoretical and experimental results of the resonator when actuated 
with VDC = 19.2 Volt, VAC = 21.2 Volt, and Ω = 187 Hz. The operating pressure is 

equal 200 mtorr. 
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Chapter 7. Summary, Conclusions, and Future Works 
 
 
 

7.1 Summary and Conclusions 
 

We presented an investigation of the response of a MEMS device under mechanical 

shock and electrostatic force. We observed interesting behaviors for the case of negligible 

squeeze film damping effect, where an apparent gap in the spectrum, referred to as the 

pull-in zone, was obtained. Raising the electrostatic force caused softening of the 

microstructure and created wider pull-in zones. When squeeze film effects were present, 

a great suppression of the proof mass deflection in the dynamic region of the spectrum 

was noted, causing pull-in to occur at the quasi-static region, where SQFD has minimal 

effect. This is crucial for MEMS designers that design devices acting in the quasi-static 

range to avoid any amplification in the motion of the microstructure.  

 

The effect of the PCB motion on the response of a MEMS device to shock was also 

investigated. It was found that in the case where the natural frequency of the PCB is close 

to that of the MEMS device, the PCB amplifies the response of the MEMS device due to 

shock. However, in the case where the natural frequency of the PCB was far from that of 

the MEMS device, the PCB motion had no effect on the response of the MEMS device to 

shock and acted almost as a rigid body. 
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Also presented was the effect of mechanical shock on an electrostatically driven 

resonator. It was found that the time at which the mechanical shock is applied to the 

resonator is of great importance. In some cases, the response of the resonator was 

attenuated due to the applied shock. In other cases, the response of the resonator was 

amplified, sometimes reaching pull-in which could lead to its failure. 

 

The use of nonlinearities arising from the electrostatic forces was used to an advantage, 

in an attempt to enhance the sensitivity of a resonant accelerometer. It was found that at 

high values of electrostatic actuation, the accelerometer becomes softer and is more 

sensitive to low accelerations. One draw back to this concept is the stability of the 

accelerometer at such high electrostatic forces. The basin of attraction was used to 

illustrate the stability of the accelerometer, and it was found that for high electrostatic 

forces, the accelerometer was almost unstable. This fact was used to an advantage in 

realizing a switch triggered by low accelerations. 

 

The experimental investigation presented in this work was first used to obtain tested 

device parameters. Experimental investigations were conducted to validate the 

simulations. The experimental data obtained on the device response to shock under 

different actuation voltages was in good agreement with the simulations, with and 

without the presence of squeeze film damping. The experimental data on the response of 

the resonator to mechanical shock was also in good agreement with the simulation 

results.  
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It is realized through the work conducted in this thesis, that accounting for the 

electrostatic forces, squeeze film damping, and PCB motion when investigating the 

response of a MEMS device under shock is vital. It is found in many cases, that the 

response of a MEMS device is liable to amplifications that may lead to early dynamic 

instabilities, and hence could lead to its failure. 

 

7.2 Future Works 
 

The following is a list of recommendations and notes for future work. 

 

• The use of control methods to stabilize the resonant accelerometer when operated 

in the nonlinear regime. 

• The design of a microstructure for the purpose of acting as a switch triggered by 

acceleration, using the same concept adopted in this thesis. The design should 

include optimization of the mechanical parameters such as the stiffness, damping, 

and the natural frequency, along with the geometric properties of the device such 

as the electrode surface area and gap size. 

• Further study the fractal behavior of pull-in when the microstructure is 

electrostatically actuated and subjected to mechanical shock. 

• Improve the experimental setup used to investigate the effect of mechanical shock 

on resonators by better controlling the input parameters and the instant of shock 

application for a more accurate comparison with simulations. 
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• Avoid current magnetic problems existing from the shaker used in vacuum by the 

use of a magnetic insulating material between the driving shaft of the shaker and 

the microstructure placed on it. 

• The use of a new shaker when conducting the experimental work in vacuum that 

does not have magnetic effects on the microstructure for more accurate results. 

• Modify the resonant accelerometer problem from measuring only static 

acceleration to measuring accelerations from random vibration signals. 

• Perform experimental work to verify the concepts used in enhancing the 

sensitivity of a resonant accelerometer. 

• Investigate the effect of the position of the microstructure on the PCB, when the 

assembly is subjected to mechanical shock. 

• Investigate the effect of mechanical shock on resonant sensors when placed on a 

PCB. 

• Conduct similar theoretical and experimental investigations on a real MEMS 

device with geometry in the micro-range, rather than the capacitive sensor used in 

this thesis. 
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